340023 - FIS1-N1O21 - Physics I

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 721 - FEN - Department of Physics and Nuclear Engineering
Academic year: 2015
Degree: BACHELOR’S DEGREE IN INDUSTRIAL DESIGN AND PRODUCT DEVELOPMENT ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN MECHANICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN INDUSTRIAL ELECTRONICS AND AUTOMATIC CONTROL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR’S DEGREE IN ELECTRICAL ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: RAUL RODRIGUEZ SOLA
Others: FRANCISCO JAVIER BURILLO TORRECILLA - JAVIER NAVARRO BOSQUE - MANUEL MORENO LUPIAÑEZ - RAUL RODRIGUEZ SOLA - ARCADI PEJUAN ALCOBE

Degree competences to which the subject contributes

Specific:
1. D1. Knowledge of fundamental principals of mechanics of solids rigids and its application of resolving problems concerning engineering (CINEMATICA, statics, dynamics)
2. CE2. Comprehension and containment of basic concepts concerning general rules of mechanic, thermodynamic, field of shafts and electromagnetism; and its diligence to solve engineering problems.

Transversal:
3. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
4. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
5. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
340023 - FIS1-N1O21 - Physics I

Teaching methodology

- In the theory classes, the theoretical fundamentals of the scheduled matters shall be explained and developed and some typical problems shall be solved. They will consist of theory explanations complemented with activities intended for stimulating the students' participation, discussion and critical analysis.

- In the practical classes (problem solving), problems about the matters dealt with shall be presented and solved. Students, individually or in groups, have to solve the established problems. At the due time, the solving of problems or other activities to be graded will be proposed. To reach a positive mark, these activities have to be carried out or delivered within the time scheduled.

- In the laboratory classes, students have to carry out the corresponding laboratory activities and simulations. They have to deliver the resulting laboratory report with the calculations and comments asked. At the beginning of each laboratory session, each student has to deliver a previous study or questionnaire (accessible at ATENEA) about the activity to be carried out. Within the laboratory category, some activities to be carried out outside the laboratory may be proposed (reports, simulations, bibliographic research, etc.).

Learning objectives of the subject

- To know the principles and fundamental laws of Mechanics and their application to Dynamics and the equilibrium conditions for the rigid body.
- To know the basic concepts of the oscillatory motion and its modalities as well as the fundamental concepts of the wave phenomena and their applications.
- To know the basic concepts and principles of Thermodynamics and the heat transmission, as well as their practical application to heat engines.
- To be able to determine and to calculate uncertainties ("errors") associated to experimental measurements as well as to justify the results obtained.
- To be able to apply the principles of Physics to the solving of practical situations and problems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>52h 30m</th>
<th>35.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Hours small group:</td>
<td>7h 30m</td>
<td>5.00%</td>
<td></td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
<td></td>
</tr>
</tbody>
</table>
Content

C1. Basic Concepts

Learning time: 8h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 2h
Self study: 4h

Description:
Scalar and vector quantities. Vector calculus. Measurements and errors or uncertainties.

C2. Particles' Kinematics and Dynamics.

Learning time: 28h
Theory classes: 4h
Practical classes: 4h
Laboratory classes: 2h
Self study: 18h

Description:

C3. Mechanical Energy Conservation. Particle Systems and Rigid Bodies

Learning time: 40h 30m
Theory classes: 6h 30m
Practical classes: 12h
Self study: 22h

Description:

C4. Oscillations and wave motion.

Learning time: 34h
Theory classes: 6h
Practical classes: 6h
Laboratory classes: 2h
Self study: 20h

Description:
Qualification system

The mark will be the higher of both following results:

\[
QF_1 = 15\% \cdot AC + 15\% \cdot PL + 35\% \cdot EP_1 + 35\% \cdot EF \\
QF_2 = 15\% \cdot AC + 15\% \cdot PL + 70\% \cdot EF
\]

where the maximum value of every partial mark is 10. The partial marks are:

- **AC** = mark for activities (problem solving, simulations, etc.) carried out along the course.
- **PL** = mark for laboratory activities.
- **EP_1** = mark for a first partial exam approximately at the middle of the semester.
- **EF** = mark for a final exam.
- **QF_1** = mark resulting from partial and final exams and other assessment activities (AC and PL).
- **QF_2** = mark for the final exam and other assessment activities (AC and PL).

Regulations for carrying out activities

Each exam will have two parts: a multi-choice questionnaire of theory questions and brief problems (up to 40% of the exam mark) and some problems to solve (up to completing 100%). To solve the problems, students may use a list of formulas as well as any additional material which the responsible lecturers will establish and announce sufficiently in advance.

As for the laboratory activities, the previous study or questionnaire as well as the activity report delivered at the end of the laboratory sessions will be graded. These laboratory activities will have 1.5 points over 10 in the final course mark. During the course, a series of activities will be established which students have to carry out individually or in groups, within the class session or outside it, as well as any other simulation tasks. The maximum mark for these activities will be 1.5 points over 10 in the final course mark.
340023 - FIS1-N1O21 - Physics I

Bibliography

Basic:

- Tipler, Paul Allen; Mosca, Gene. Física per a la ciència i la tecnologia. 6a ed. Barcelona [etc.]: Reverté, 2010. ISBN 9788429144314.

Complementary:

Others resources:

Hyperlink

- Curso interactivo de Física en Internet http://www.sc.ehu.es/sbweb/fisica
 Conjunt de simulacions de física per ordinador d'accés lliure