Final Presentation

Project

Accessibility and Universal Design
Team Members

- **Bilgin Kahraman** – Electrical-Electronics Engineering
- **Julia Nazareth Ferreira** – Industrial Engineering
- **Maïwen Belkalem** – Packaging Engineering
- **Valentin Calzan** – Packaging Engineering
- **Rachid El Ouad** – Human Technology
- **Victor Marin** – Mechanical Engineering
Standing aids for Students with disabilities

The main aim is to improve the children’s quality of life.
Table of Contents

1. Accessibility Chair
2. Project Description
3. Clients’ Backgrounds
4. Selected Solution
 Selection Criteria
 Design
 Materials
 Testing and Improvement
5. Conclusion
Accessibility chair

- Promote & coordinate projects
- Help disabled people
 - Access to facilities
 - Use of technology
- Different approaches
 - R&D
 - Teaching
 - Awareness
Project description

- Two students with disabilities associated with Accessibility Chair.
- Develop a mechanism to add to their existing wheelchairs.
- Find a solution to help our clients to stand up more easily.
SERGI’S PROFILE

- 17 years old
- Student in the Escuela el CIM of Vilanova

DIAGNOSIS

- Young cerebral paralysis:
 - tetraplegia
 - muscular tone affected
- Training everyday with a bipedestador
- Needs the help of 2 assistants to stand up

NEEDS

- Minimize the assistance he needs to stand up
- Minimize his efforts
DARIO’S PROFILE

- 14 years old
- 75 kg weight and 1.62 meters high
- Student in the Col·legi Públic Baix a Mar of Vilanova i la Geltrú

DIAGNOSIS

- Spastic diplegia
 - generalized hypotonia
 - muscular strength affected in his lower limbs
- Can stand up alone with his arms’ strength
- Able to walk thanks to a metallic support

NEEDS

- Minimize his efforts to stand up
- Find a device to help him to be more autonomous
Selected Solution - Sergi

- From existing fishing stand-up system
- Can help Sergi to stand up gradually
 - Winch attached to the wall
 - Harness pulled by the winch
Manual winch

Why did we choose this winch?

- Simple design
- Durable
- Easy to operate
- Low price
- Low maintenance
Wall-mount

- Has to be sturdy
- Has to be easy to make
- Has to be strong enough to support Sergi’s body weight
Harness

3 possibilities:

• Buy an existing harness (climbing harness)
 Av: homologated
 Inc: Not 100% adapted, expensive

• Buy all the material and find a professional seamstress
 Inc: Hard to find all materials, expensive, long delays

• Build the harness in collaboration with physiotherapists
 Av: cheapest solution, possibility to try it directly
Design

- In collaboration with the physiotherapists:
 - Take Sergi’s measurements
 - Present our idea and select one

- Design the harness’ pattern for sewing
Materials

The main materials were chosen accordingly to the availability of the school:

1. Fabric: Cotton
2. Straps: Polyester Nylon
3. Attached point: Steel Rings
4. Closing: Velcro

Ergonomics was taken into account.
Testing And Improvement

1st Prototype

Test

2nd Prototype
Testing And Improvement

- Winch
- Harness
- 3rd Prototype
- Final

Test
Testing
Selected Solution - Dario

Main Objectives solve:

- Help Dario to stand up gradually out of his wheelchair and transfer to stander.
- Could stand up alone
- Auto-sufficient system
- Raise up more than 70%
- Prevents problems reducing pressures on joints and muscles with prolonged use
Selection Criteria

Buy an existing assistive-seats & modify it

Build an elevator seat & adapt it
Design

- Mechanism performance (70%-80% weight)
- Seat design
Performance

To solve this challenge, it is necessary to know:

- Body weight of 75kg
- Best distance between support point and reference point
- Performance (70%-80% weight)
- Force and length piston (piston range in market)
Design

• Important aspects to design prototype:
 ✓ Ergonomic
 ✓ Comfortable
 ✓ Attractive design
 ✓ Quality materials & sustainable
 ✓ be portable & lightweight
 ✓ Safe (non-slip material)
 ✓ Try to maximize resources
Materials

- There are four components necessary to make a new seat:
 - Pneumatic Piston
 - Wood
 - Supporting Piston
 - Box of Screws
 - Metal Hinges
 - Foam and Textile
Testing And Improvement

- Assembling
- Testing
- Improving
Testing and Improvement

1st prototype

2nd Prototype

Test
Prototype Testing
Next steps

Elevator seat:
• Modify for easy transport
• Find more sustainable materials.

Harness and winch:
• Bipedestador must be more stable
• The winch should be adapted to transport more easily
Thank you for your attention