Degree competences to which the subject contributes

Specific:
1. CE26. Applied knowledge of systems and fabrication process, METROLOGIA and quality control.

Transversal:
2. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.
4. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

Teaching methodology

The sessions are divided into classes of theory, problems and laboratory practice. The lectures comprise the statements of the basic theoretical concepts of the topics of the course applied examples and exercises as described. They will also be proposed Exercises that the students will solve individually "on line" through a mobile phone, a tablet or a laptop. In laboratory practice classes, experimental fellows are developed and is the student, individually or in groups, who must work on the aspects set by the teacher.

Learning objectives of the subject

When finishing the subject the student has to be able to:
- Describe the main processes of formation used at industrial level.
- Use quality management tools and metrology applied to manufacturing processes.
- Choose the type of manufacturing process of a piece based on the design, material and technological and environmental aspects.
- Use, in a basic way, the machines of the manufacturing processes studied.
- Work in teams effectively, improving communication, distribution of tasks and group cohesion.
- Exhibits effective technical results.

Study load

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45h</td>
<td>0h</td>
<td>15h</td>
<td>0h</td>
<td>90h</td>
</tr>
<tr>
<td></td>
<td>30.00%</td>
<td>0.00%</td>
<td>10.00%</td>
<td>0.00%</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>- Metrology and quality in manufacturing processes.</th>
<th>Learning time: 37h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Measurement. Errors and uncertainty in the measurement</td>
<td></td>
</tr>
<tr>
<td>Dimensional and geometric tolerances. Settings.</td>
<td></td>
</tr>
<tr>
<td>Verifiers fixed dimensions. Gauges</td>
<td></td>
</tr>
<tr>
<td>Surface Finish</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>A1 = Learning Assessment.</td>
<td></td>
</tr>
<tr>
<td>A2 = Lab.</td>
<td></td>
</tr>
<tr>
<td>A3 = Reporting.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Calculate adjustments make mounting and control.</td>
<td></td>
</tr>
<tr>
<td>Decide surface roughness depending on the application.</td>
<td></td>
</tr>
<tr>
<td>Having quality concepts in all phases of the production process; estimate its difficulty and need, and know the different solutions adopted in the industry and the tools available.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>- Conforming processes by plastic deformation and machining.</th>
<th>Learning time: 35h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Hot deformation process</td>
<td></td>
</tr>
<tr>
<td>Cold deformation processes i cut</td>
<td></td>
</tr>
<tr>
<td>Machining by chip removal. Features</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>A1 = Learning Assessment.</td>
<td></td>
</tr>
<tr>
<td>A2 = Lab.</td>
<td></td>
</tr>
<tr>
<td>A3 = Reporting.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>Know the different types of deformation processes in hot, cold deformation i cut, its features and where they apply.</td>
<td></td>
</tr>
<tr>
<td>Understand the concept of machining machining, advantages, machinery, and basic concepts of calculus.</td>
<td></td>
</tr>
</tbody>
</table>
Conforming processes by casting and molding.

Learning time: 18h 30m
Theory classes: 6h
Practical classes: 0h
Laboratory classes: 2h
Self study: 10h 30m

Description:
Foundry. Sand casting
Materials for molds
Molding metal mold

Related activities:
A1 = Learning Assessment.
A2 = Lab.
A3 = Reporting

Specific objectives:
Know the most important molding processes and parameters that define them

Powder Metallurgy.

Learning time: 18h 30m
Theory classes: 6h
Practical classes: 0h
Laboratory classes: 2h
Self study: 10h 30m

Description:
Powder Metallurgy
Arc welding, TIG, MIG, resistance
Hard and soft soldering

Related activities:
A1 = Learning Assessment.
A2 = Lab.
A3 = Reporting

Specific objectives:
Know the main features and applications of Powder Metallurgy.
Knowing the different welding technologies.
Computer aided manufacturing.

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 35h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main concepts of computer aided manufacturing. ISO programming.</td>
<td>Theory classes: 10h 30m</td>
</tr>
<tr>
<td>Related activities:</td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>A1 = Learning Assessment.</td>
<td>Laboratory classes: 3h 30m</td>
</tr>
<tr>
<td>A2 = Lab.</td>
<td>Self study: 21h</td>
</tr>
<tr>
<td>A3 = Reporting.</td>
<td></td>
</tr>
</tbody>
</table>

Specific objectives:
The student must know the concept of numerical control, their vewntajas, machinery, and basic programming concepts.

(ENG) Proves d’avaluació individual

<table>
<thead>
<tr>
<th>Description:</th>
<th>Learning time: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each student will make two single assessment tests and rump work to be presented in public.</td>
<td>Guided activities: 6h</td>
</tr>
</tbody>
</table>
Planning of activities

A1. LEARNING ASSESSMENT

Hours: 5h
Theory classes: 5h

Description:
Training for the acquisition of knowledge and individual study activities.

Support materials:
Statement of the test.

Descriptions of the assignments due and their relation to the assessment:
Resolution in writing or oral, justified, and individual test questions.

Specific objectives:
Assess the level of knowledge and competencies of the subject. Resolution in writing or an oral test, justified and individual issues.

A2. PRACTICE

Hours: 11h
Theory classes: 11h

Description:
Development of a laboratory experimental work, scheduled and guided by Professor embodiment.

Support materials:
Reports preparatory process of the realization of the lab.

Descriptions of the assignments due and their relation to the assessment:
For each session of laboratory practice, a document of the work done will be delivered according to the conditions specified in each particular case.

Specific objectives:
Recognize and apply some of the concepts studied in the theory activities.
Explain and describe the practical phenomena observed in the laboratory.

A3. QUESTIONNAIRES

Hours: 1h
Theory classes: 1h

Description:
Exercises will be proposed that students will solve in class individually "online" through a mobile phone, a tablet or a laptop.

Specific objectives:
Reinforce the lessons learned in class.

Qualification system

The training activities of learning and individual student study will be evaluated through written or oral tests: 75%.
Training activities related to exercises resolved in class by students: 5%
The training activities related to practical work is assessed by the following parameters: personal attitude, individual work developed, reporting on individual or team activities: 20%.
Only the written tests, corresponding to 75% of the final mark, will be Reassessable.
The conditions for completion of each test shall be specified in each case, in good time.

Bibliography

Basic:

Complementary:

