Degree competences to which the subject contributes

Specific:

Transversal:
2. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.
4. EFFECTIVE USE OF INFORMATION RESOURCES. Managing the acquisition, structure, analysis and display of information from the own field of specialization. Taking a critical stance with regard to the results obtained.
 - 05 TEQ N2. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
 - 05 TEQ N1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.

Teaching methodology

There are large group classes, that deal with theoretical explanations, descriptions of selected examples and problem solving (by hand, with computer and smartphone). In the computer lab sessions, students work with Geogebra in order to work the theoretical concepts and prepare graphical projects.

Learning objectives of the subject

* To understand the concepts and techniques of classical geometry that are essential for CAGD:
 - To use affine coordinates and transformations to move and transform the shape of plane and spacial geometric figures
 - To handle with conics and quadric surfaces, as example of basic curves and surfaces
 - To understand the following concepts of differential geometry: curvature, torsion and osculating circle of a curve; tangent plane, normal vector and Dupin indicatrix of a surface

* To use the techniques of Bézier designing curves and surfaces:
- To deal with Bernstein polynomials for Bézier curves and surfaces
- To learn the de Casteljau Algorithm
- To understand the problem of geometric continuity for Bézier curves and surfaces

Study load

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours large group:</td>
<td>45h</td>
<td>30.00%</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>15h</td>
<td>10.00%</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
1. Review of basic geometry

Learning time: 8h
- Theory classes: 2h
- Laboratory classes: 2h
- Self study: 4h

Description:
1. Plane geometry: parallelism, perpendicularity, distance
2. Space geometry: lines, planes, parallelism, perpendicularity, distance

Related activities:
- Activities 1, 2, 3, 4 & 6

2. Differential Geometry of curves

Learning time: 36h
- Theory classes: 10h
- Laboratory classes: 2h
- Self study: 24h

Description:
1. Regular parametrizations
2. Conics
3. Curvature and torsion
4. Osculating circle and evolutes
5. Frenet frame
6. Geometric continuity

Related activities:
- Activities 1, 5
3. Differential Geometry of Surfaces

Learning time: 24h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 16h

Description:
1. Regular parameterizations
2. Cuádricas
3. Surfaces of revolution
4. Ruled surfaces
5. Tangent plane
6. Gaussian, normal and mean curvature
7. Dupin’s indicatrix
8. Offset surfaces
9. Tubular surfaces

Related activities:
Activities 1, 5

3. Bézier curves and B-splines curves

Learning time: 40h
- Theory classes: 12h
- Laboratory classes: 4h
- Self study: 24h

Description:
3.1 Linear interpolation. Examples of curves
3.2 Bernstein Polynomials
3.3 Bézier curves. Properties
3.4 Algorithm of de Casteljau
3.5 Geometric continuity
3.6 B-spline curves
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1: EXAM OF ITEMS 1, 2 AND 3 (FIRST MIDTERM EXAM) | 2h | Theory classes: 2h
Exam: Problems, theoretical questions and labs of topics 1, 2 and 3 |
| 2: PROJECT 1: Mosaics | 4h | Laboratory classes: 2h
Self study: 2h
Design of a mosaic with Geogebra |
| 3: PROJECT 2: Animation | 12h | Laboratory classes: 2h
Self study: 10h
Design of an animation with Geogebra |
| 4: PROJECT 3: Composition 3D | 8h | Laboratory classes: 2h
Self study: 6h
Design of a composition 3D with Geogebra |
| 5: FINAL EXAM | 2h | Theory classes: 2h
Exam: Problems and theoretical questions of topics 1, 2, 3, 4, 5 and 6 |
Qualification system

\[
\text{max}(0.4 \times NA1 + 0.1 \times NA2 + 0.3 \times NA3 + 0.2 \times NA4, 0.05 \times NA2 + 0.15 \times NA3 + 0.1 \times NA4 + 0.7 \times NA5)
\]
NA1: First midterm exam (activity 1)
NA2, NA3, NA4: Projects (activities 2, 3, 4)
NA5: Final exam (activity 5)

Final exam is re-evaluable

Regulations for carrying out activities

Activities 1 and 5 are standard exams. Activities 2, 3 and 4 are done in pairs, and must be presented in the dates fixed at the beginning of the course.

Bibliography

Basic:

Complementary:

Others resources:

Geogebra (https://www.geogebra.org/)
Geogebra page of the course (https://www.geogebra.org/m/da8xm4jG)