Degree competences to which the subject contributes

Specific:
1. CE25. Knowledge and ability to apply material engineering.

Transversal:
2. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.
4. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Teaching methodology

Attending sessions of exposition of contents.
- Attending sessions of practical work (resolution of exercises).
- Attending sessions of practical work in working groups (practices of laboratory).

The professor will introduce the theoretic bases of the matter of the manufacturing processes in the sessions of exposition of contents.
The professor will guide the student in the understanding of the theoretic concepts in the sessions of resolution of exercises, likewise, the oral communication by means of the presentation will be worked up and resolution in public of the proposed problems.
The ability of work in team will develop in the sessions of laboratory.

In the out-class activities the professor supervises the student's work by means of the analysis of his evolution through the evaluation activity and the guided activities.

Learning objectives of the subject

1. Applying design criteria in order to ensure the mechanical reliability of products and systems.
2. Identifying the possible causes of failures of a component, in terms of the in service environment.
3. Offering solutions to avoid the failure of components.
4. Analyzing and applying the methodology of application of nondestructive testing

<table>
<thead>
<tr>
<th>Study load</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td>Hours large group: 45h</td>
<td>30.00%</td>
</tr>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

(ENG) 1. Nondestructive testing and quality management

Degree competences to which the content contributes:

Description:

(ENG) 1.1 Nondestructive Testing: Applicability. 1.2 Reliability. 1.3 Qualification and Certification

(ENG) 2. Penetrant testing

Degree competences to which the content contributes:

Description:

(ENG) 2.1 Penetrant Testing: Theory and principles. 2.2 Penetrant procedures. 2.3 Techniques and variables. 2.4 Advantages and limitations.

(ENG) 3. Magnetic particles testing

Degree competences to which the content contributes:

Description:

(ENG) 3.1 Magnetic particle testing: Theory and principles. 3.2 Equipment and techniques. 3.3 Variables. 3.4 Advantages and limitations.

(ENG) 4. Ultrasonic testing

Degree competences to which the content contributes:

Description:

(ENG) 4.1 Theory and principles: sound waves. 4.2 Ultrasonic Wave Propagation: Transmission and damping. 4.3 Equipment and techniques. 4.4 Variables. 4.5 Advantages and limitations.

(ENG) 5. Eddy currents testing

Degree competences to which the content contributes:

Description:

(ENG) 5.1. Eddy currents testing: Theory and principles (electromagnetic induction). 5.2 Impedance of samples. 5.3 Metallurgical variables. 5.4 Inspection techniques. 5.5 Advantages and limitations.

(ENG) 6. Radiographic Testing

Degree competences to which the content contributes:
(ENG) 7. Other Nondestructive testing techniques

Degree competences to which the content contributes:

Description:
(ENG) 7.1 Thermal infrared testing. 7.2 Holography. 7.3 Barkhausen effect

(ENG) 8. Mechanical failures

Degree competences to which the content contributes:

Description:
(ENG) 8.1 Mechanical Failures: prevention and/or analysis?. 8.2 Failure modes: ductile fracture and brittle fracture

(ENG) 9. Fracture mechanics

Degree competences to which the content contributes:

Description:
(ENG) 9.1 Fracture mechanics: Fracture toughness 9.2 Metallurgical variables

(ENG) 10. Fatigue

Degree competences to which the content contributes:

Description:
(ENG) 11.1 Fatigue design: cyclic loadings. 11.2 Crack initiation and growth 11.3 Total-life approaches and damage-tolerant approaches.

(ENG) 11. Design for high temperature

Degree competences to which the content contributes:

Description:
(ENG) 10.1 Creep: Alloys for high temperatures. 10.2 Thermal shock.
The evaluation of the course will become according to the following indicators:

T, Theory: average mid-term exam 1 and mid-term exam 2.
P, Interventions in the classroom, in the case study. It is mandatory to evaluate, at least, 50% of the presentations.
L, Practices of laboratory: Weighted average of the different programmed practices.

Final grade = 0.55T+0.20P+0.25L

The laboratory practices, the tests carried out via Campus Digital and the activities carried out in the classroom during the regular period of classes (problems and / or presentations of work) will not be re-evaluated.
Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

Journal of Nondestructive Testing (Ofereix articles en línia)
http://www.ndt.net/v03n12.htm

ASNT (American Society for Nondestructive Testing)
http://www.asnt.org/

Engineering Failure Analysis
http://www.sciencedirect.com/science/journal/13506307