Degree competences to which the subject contributes

Specific:
1. CEFC6. CEFC6. Basic knowledge and application of algorithmic processes, informatic techniques to design solutions of problems, analyzing if proposed algorithms are apt and complex.

Transversal:
2. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
05 TEQ N1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.
04 COE N1. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 1. Planning oral communication, answering questions properly and writing straightforward texts that are spelt correctly and are grammatically coherent.
05 TEQ. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.
07 AAT N2. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.

Learning objectives of the subject
Study load

<table>
<thead>
<tr>
<th>Total learning time: 187h 30m</th>
<th>Hours large group: 75h 40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h 0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 112h 30m 60.00%</td>
</tr>
</tbody>
</table>
3. Vector spaces

Description:
How to determine the dependence / independence of vectors and calculate dimensions and bases of a subspace.

3. Linear independence of vectors.
4. Dimension and basis of a vector space.

Related activities:

Specific objectives:
4. Linear Maps

Learning time: 36h
- Theory classes: 14h
- Practical classes: 0h
- Self study: 22h

<table>
<thead>
<tr>
<th>Description:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
</tbody>
</table>

5. Differential Calculus

Learning time: 54h 40m
- Theory classes: 21h 20m
- Practical classes: 0h
- Self study: 33h 20m

<table>
<thead>
<tr>
<th>Description:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
</tbody>
</table>

7. Integral Calculus

Learning time: 42h
- Theory classes: 16h
- Practical classes: 0h
- Self study: 26h

<table>
<thead>
<tr>
<th>Description:</th>
<th>Calculate change of variable primitives and parts. Calculation of integrals of rational functions. Rule Barrow.</th>
</tr>
</thead>
</table>
| Related activities: | 1 Revision immediate calculation primitives. Change of variable and integration by parts.
2 Primitives rational functions.
3 Global defined as area. Barrow's rule.
4 Applications to the calculation of areas and volumes. |
| Specific objectives: | |

Qualification system

Regulations for carrying out activities

Bibliography

Complementary:

Others resources:

- http://www.geogebra.org

Octave

Computer material

Geogebra

Resource