340623 - ECUS-R2P07 - User-Centered Engineering

Coordinating unit: 340 - EPSEVG - Vilanova i la Geltrú School of Engineering
Teaching unit: 707 - ESAII - Department of Automatic Control
Academic year: 2017
Degree: MASTER'S DEGREE IN AUTOMATIC SYSTEMS AND INDUSTRIAL ELECTRONICS (Syllabus 2012).
ECTS credits: 5
Teaching languages: Catalan

Teaching staff
Coordinator: MARTA DÍAZ BOLADERAS - PERE PONSA ASENSIO
Others: MARTA DÍAZ BOLADERAS - PERE PONSA ASENSIO

Opening hours
Timetable: Pere Ponsa: Monday, D-170, 15:00 to 19:00 PM

Requirements
Previously passed
MEDI Metodologia del disseny

And jointly with INPS we recommend
ENUA Enginyeria de la usabilitat i l'accessibilitat
DIDU Disseny inclusiu i disseny centrat en l'usuari

Degree competences to which the subject contributes

Transversal:
1. TEAMWORK - Level 2. Contributing to the consolidation of a team by planning targets and working efficiently to favor communication, task assignment and cohesion.
2. ENTREPRENEURSHIP AND INNOVATION - Level 2. Taking initiatives that give rise to opportunities and to new products and solutions, doing so with a vision of process implementation and market understanding, and involving others in projects that have to be carried out.
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.
4. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.
Teaching methodology

Participatory lectures

In the sessions the / the teacher / a made a synthesis of the subject. This exhibition is intended as a guide for the work study students, with the function of presenting the subject, propose material for study, clarify doubts and make a synthesis.

Each theme will be provided:

- Material in Power-Point format used in the exhibition class and other supplementary material which will be available on the Digital Campus.
- Bibliography indicating specific location, preferring to material in electronic format.

It is taking care that concepts have a direct connection with work activities during the course.

Attended Work Activities

- Problems and Exercises for fixing the concepts introduced in the exhibition.
- Approach of situations that allow the group build a shared experience that serves to advance the understanding of the contents (for example group dynamics, effective communication experiences). They are based on experience different situations in which the experience serves as a study material.

Casework and articles

The work on cases or articles will be based on questions raised by the / the teacher / a. These jobs will have to deliver on agreed at the beginning of the session which will discuss in class group. The deadline to submit a case is set in the calendar. The / the teacher / a can upload the Digital Campus, additional reference and guidance, some of the more well worth every delivery jobs.

The casework seeks to promote the following capabilities:

- Understanding of the situation presented and the ability to synthesize the most important aspects
- Apply the concepts studied to practical cases.
- Capturing the complexity of real life situations, different points of view and the various dimensions of the phenomena
- Submission of written documents
- Ability to exchange views and discuss, and ability to learn the debate

Draft

The project will be conducted in groups. Throughout the course three practices where problems which will need to apply the knowledge they have acquired will be raised will be made. This project will act as the backbone of learning, following the principles of project-based learning. For each practice a dossier which shall include the objectives, description, date of delivery, and evaluation criteria will be provided. Each practice will consist of a report and a presentation at pp.

Oral presentations of their practices by students

Each student will make an oral presentation at least one of them practices carried out. The days of exposure will be announced at the beginning of the course. The day of the exhibition / the teacher / a designate the groups that made the exhibition.

Individualized tutoring in small group
Learning objectives of the subject

OBJECTIVES

1. Analysis requirements of users
2. Context of use
3. Application of universal design principles
4. Application of usability engineering methods and tools
5. Application of interface design techniques
6. Human centric interfaces for ambient intelligence
7. Home automation systems: domotic systems

RESULTS

1. Multidisciplinary project development
2. Guidelines design based on the user profile
3. Usability reports
4. Plan and development of evaluation test
5. Knowledge of international standards

Study load

<table>
<thead>
<tr>
<th>Total learning time: 125h</th>
<th>Hours large group: 30h</th>
<th>24.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 15h</td>
<td>12.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 80h</td>
<td>64.00%</td>
</tr>
</tbody>
</table>

The teacher / a will individually and in small groups student progress and monitor their practices, providing feedback on their progress, the degree of achievement of the objectives of their work and giving directions for improvement.
Module 1 Human Automation Systems

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pere Ponsa</td>
</tr>
</tbody>
</table>

- 1.1 Human Machine interaction
- 1.2 Robot work cell layout
- 1.3 Robot control
- 1.4 Automation project phases
- 1.5 Safety
- 1.6 Examples: human robot interaction

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples and study cases where is established a relationship between interaction, technology and workplace design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand basic principles of interaction between humans, objects and complex systems. From human cells to robot work cells,</td>
</tr>
</tbody>
</table>

Learning time: 32h
- Theory classes: 8h
- Practical classes: 0h
- Laboratory classes: 6h
- Guided activities: 0h
- Self study: 18h
Module 2 Human factors for engineers

Learning time: 39h
- Theory classes: 10h
- Practical classes: 0h
- Laboratory classes: 8h
- Guided activities: 0h
- Self study: 21h

Description:
Pere Ponsa

3.1 Sensation
3.2 Perception
3.3 Cognition and memory
3.4 Gestalt Principles and application to interface design
3.5 GEDIS guideline. Industrial automation interface design.
3.6 Examples
3.5 Joint cognitive system
3.6 Human error classification and design implications
3.7 Examples

Related activities:
Study cases: automation systems

Specific objectives:
Know how the basic aspects of cognitive psychology can be useful in the interface design and the control of complex systems
Module 3 Usability engineering

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>39h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>10h</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>0h</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>8h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>21h</td>
</tr>
</tbody>
</table>

Description:
Marta Díaz

2.1 The process of quality assurance
2.2 Investigation Techniques
2.3 Inspection Techniques
2.4 Test Techniques

Related activities:
Related to Module 5 project

Specific objectives:
Follow the user centred design and show how apply the usability engineering. How measure task effectiveness, efficiency and user satisfaction in the use of objects, systems and technology

Module 4 User Experience

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>79h 45m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>41h 15m</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>0h</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>22h 30m</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>0h</td>
</tr>
<tr>
<td>Self study:</td>
<td>16h</td>
</tr>
</tbody>
</table>

Description:
Marta Díaz

4.1 Beyond usability
4.2 Emotional Design
4.3 Interaction with technologies personified
4.4 A special case: the social relationship with robots

Related activities:
Study cases: Kismet, robot AIBO, robot Pleo, avatar

Specific objectives:
Learn how improve the relationship between the product design, the user experience and the emotional design
Module 5 Project

Learning time: 25h
- Theory classes: 20h
- Self study: 5h

Description:
AL.-116 Interactive Systems Design Laboratory

Pere Ponsa
Marta Díaz

Related activities:
- Rapport
- Development of a CD multimedia
- Oral presentation

Evaluation:
- Work in class: (20%)
- Oral presentation (20)
- Final rapport (60%)

Specific objectives:
- Performance
- Human centered design
- Ergonomics, usability and context of use

Regarding with smart systems:
- Model process engineering of usability and accessibility applied to the use of a telerobot Pleo.
- Interface design in a supermarket machine.
- Interface design for automation systems

Qualification system

The evaluation of the student will consider both the work group as the acquisition of content evaluated with one or more exams. These exams may have a short question or multiple choice test, and another open questions or development. Students will also have a score obtained from the oral presentation of the project, and according to his attendance and contributions in theoretical and practical classes.

Mark = Written exam * 0.3 + Project * 0.6 + Participation * 0.1
Bibliography

Basic:

Complementary:

Others resources:

Audiovisual material

Libro-e AIPO
http://www.aipo.es/libro/libroe.php

DSI
http://www.epsevg.upc.edu/hcd/

In-Tech llibres http://www.intechopen.com/subjects/industrial-robotic-programming
Resource